martes, 27 de mayo de 2008

TRANSISTORES

TRANSISTORES




El Transistor es un dispositivo
electrónico semiconductor que cumple funciones de amplificador, oscilador, conmutador o rectificador. El término "transistor" es la contracción en inglés de transfer resistor ("resistencia de transferencia"). Actualmente se los encuentra prácticamente en todos los enseres domésticos de uso diario: radios, televisores, grabadores, reproductores de audio y vídeo, hornos de microondas, lavadoras, automóviles, equipos de refrigeración, alarmas, relojes de cuarzo, computadoras, calculadoras, impresoras, lámparas fluorescentes, equipos de rayos X, tomógrafos, ecógrafos, reproductores mp3, celulares, etc.
Sustituto de válvula termoiónica
de tres electrodos otriodo, el transistor bipolar fue inventado en los Laboratorios Bell deEE. UU. en diciembre de 1947 por John Bardeen, Walter Houser Brattain y WilliamBradford Shockley, quienes fueron galardonados con el Premio Nobel de Física en 1956.
El transistor consta de un sustrato (usualmente silicio) y tres partes dopadas artificialmente que forman dos uniones bipolares, el emisor que emite portadores,
el colector que los recibe o recolecta y la tercera, que está intercalada entre las dos primeras, modula el paso de dichos portadores (base). A diferencia de las válvulas, el transistor es un dispositivo controlado por corriente y del que se obtiene corriente amplificada. En el diseño de circuitos a los transistores se les considera un elemento activo, a diferencia de los resistores, capacitores e inductores que son elementos pasivos. Su funcionamiento sólo puede explicarse mediante mecánica cuántica.
De manera simplificada, la corriente que circula por el "colector" es función amplificada de la que se inyecta en el "emisor", pero el transistor sólo gradúa la corriente que circula a través de sí mismo, si desde una fuente de corriente continua se alimenta la "base" para que circule la carga por el "colector", según el tipo de circuito que se utilice. El factor de amplificación logrado entre corriente de base y corriente de colector, se denomina Beta del transistor. Otros parámetros a tener en cuenta y que son particulares de cada tipo de transistor son: Tensiones de ruptura de Colector Emisor, de Base Emisor, de Colector Base, Potencia Máxima, disipación de calor, frecuencia de trabajo, y varias tablas donde se grafican los distintos parámetros tales como corriente de base, tensión Colector Emisor, tensión Base Emisor, corriente de Emisor, etc. Los tres tipos de esquemas básicos para utilización analógica de los transistores son emisor común, colector común y base común.
Modelos posteriores al transistor descrito, el transistor bipolar (transistores FET, MOSFET, JFET, CMOS, VMOS, etc.) no utilizan la corriente que se inyecta en el terminal de "base" para modular la corriente de emisor o colector, sino la tensión presente en el terminal de puerta o reja de control y gradúa la conductancia del canal entre los terminales de Fuente y Drenador. De este modo, la corriente de salida en la carga conectada al Drenador (D) será función amplificada de la Tensión presente entre la Puerta (Gate) y Fuente (Source). Su funcionamiento es análogo al del triodo,
con la salvedad que en el triodo los equivalentes a Puerta, Drenador y Fuente son Reja, Placa y Cátodo.
Los transistores de efecto de campo, son los que han permitido la integración a gran escala que disfrutamos hoy en día, para tener una idea aproximada pueden fabricarse varios miles de transistores interconectados por centímetro cuadrado y en varias capas superpuestas.



Tipos de transistor
http://www.planetaelectronico.com/cursillo/tema2/tema2.6.html

Transistor de punta de contacto. Primer transistor que obtuvo ganancia, inventado en 1947 por J. Bardeen y W. Brattain. Consta de una base de germanio sobre la que se apoyan, muy juntas, dos puntas metálicas que constituyen el emisor y el colector. La corriente de emisor es capaz de modular la resistencia que se "ve" en el colector, de ahí el nombre de "transfer resistor". Se basa en efectos de superficie, poco conocidos en su día. Es difícil de fabricar (las puntas se ajustaban a mano), frágil (un golpe podía desplazar las puntas) y ruidoso. Sin embargo convivió con el transistor de unión (W. Shockley, 1948) debido a su mayor ancho de banda. Hoy día ha desaparecido.




Transistor de unión bipolar
http://www.simbologia-electronica.com/simbolos/transistores.htm

BJT por sus siglas en inglés, se fabrica básicamente sobre un monocristal de Germanio, Silicio o Arseniuro de Galio, que tienen cualidades de semiconductores, estado intermedio entre conductores como los metales y los aislantes como el diamante. Sobre el sustrato de cristal, se contaminan en forma muy controlada tres zonas, dos de las cuales son del mismo tipo, NPN o PNP, quedando formadas dos uniones NP.
La zona N con elementos donantes de electrones (cargas negativas) y la zona P de aceptadores o "huecos" (cargas positivas). Normalmente se utilizan como elementos aceptadores P al Indio (In), Aluminio (Al) o Galio (Ga) y donantes N al Arsénico (As) o Fósforo (P).
La configuración de uniones PN, dan como resultado transistores PNP o NPN, donde la letra intermedia siempre corresponde a la característica de la base, y las otras dos al emisor y al colector que, si bien son del mismo tipo y de signo contrario a la base, tienen diferente contaminación entre ellas.
El mecanismo que representa el comportamiento semiconductor dependerá de dichas contaminaciones, de la geometría asociada y del tipo de tecnología de contaminación (difusión gaseosa, epitelial, etc.) y del comportamiento cuántico de la unión.
Fototransistor, sensible a la radiación electromagnética
, en frecuencias cercanas a la de la luz.
Transistor de unión unipolar.
Transistor de efecto de campo,FET,
que controla la corriente en función de una tensión; tienen altaimpedancia de entrada.
Transistor de efecto de campo de unión, JFET,
construido mediante una unión PN.
Transistor de efecto de campo de compuerta aislada, IGFET, en el que la compuerta se aísla del canal mediante un dieléctrico.

Transistor de efecto de campo MOS, MOSFET,
donde MOS significa Metal-Óxido-Semiconductor, en este caso la compuerta es metálica y está separada del canal semiconductor por una capa de óxido.

Transistores y electrónica de potencia
Con el desarrollo tecnológico y evolución de la electrónica, la capacidad de los dispositivos semiconductores para soportar cada vez mayores niveles de tensión y corriente ha permitido su uso en aplicaciones de potencia. Es así como actualmente los transistores son empleados en conversores estáticos de potencia, controles para motores y llaves de alta potencia (principalmente inversores), aunque su principal uso está basado en la amplificación de corriente dentro de un circuito cerrado.

El transistor frente a la válvula termoiónica


Antes de la aparición del transistor los ingenieros utilizaban elementos activos llamados válvulas termoiónicas. Las válvulas tienen características eléctricas similares a la de los transistores de efecto de campo (FET): la corriente que los atraviesa depende de la tensión en el borne de comando, llamado rejilla. Las razones por las que el transistor reemplazó a la válvula termoiónica son varias:
Las válvulas termoiónicas necesitan tensiones muy altas, del orden de las centenas de voltios, tensiones que son letales para el ser humano.


Las válvulas consumen mucha energía, lo que las vuelve particularmente poco útiles para el uso con baterías.
Probablemente, uno de los problemas más importantes es el peso. El chasis necesario para alojar las válvulas, los transformadores requeridos para suministrar la alta tensión, todo ello sumaba un peso importante, que iba desde algunos kilos a algunas decenas de kilos.
El tiempo medio entre fallas de las válvulas termoiónicas es muy corto comparado al del transistor, sobre todo a causa del calor generado.
Ademas las valvulas termoiónicas tardan mucho para poder ser utilizadas. Las vávulas necesitan estar calientes para funcionar.



Como ejemplo de todos estos inconvenientes se puede citar a la primera computadora digital, llamada ENIAC. Era un equipo que pesaba más de treinta toneladas y consumía 200 kilovatios, suficientes para alimentar una pequeña ciudad. Tenía alrededor de 18.000 válvulas, de las cuales algunas se quemaban cada día, necesitando una logística y una organización importantes.


Cuando el transistor bipolar fue inventado en 1947, fue considerado una revolución. Pequeño, rápido, fiable, poco costoso, sobrio en sus necesidades de energía, reemplazó progresivamente a la válvula termoiónica durante la década de 1950, pero no del todo. En efecto, durante los años 60, algunos fabricantes siguieron utilizando válvulas termoiónicas en equipos de radio de gama alta, como Collins y Drake; luego el transistor desplazó a la válvula de los transmisores pero no del todo de los amplificadores de radiofrecuencia. Otros fabricantes, de equipo de audio esta vez, como Fender, siguieron utilizando válvulas termoiónicas en amplificadores de audio para guitarras. Las razones de la supervivencia de las válvulas termoiónicas son varias:


El transistor no tiene las características de linearidad a alta potencia de la válvula termoiónica, por lo que no pudo reemplazarla en los amplificadores de transmisión de radio profesionales y de radioaficionados.
Los armónicos introducidos por la no-linealidad de las válvulas resultan agradables al oído humano
por lo que son preferidos por los audiófilos




El transistor es muy sensible a los efectos electromagnéticos de las explosiones nucleares, por lo que se siguieron utilizando válvulas termoiónicas en algunos sistemas de control-comando de cazas de fabricación soviética.




Tipos de transistores. Simbología



Existen varios tipos que dependen de su proceso de construcción y de las apliaciones a las que se destinan. Aquí abajo mostramos una tabla con los tipos de uso más frecuente y su simbología:
Transistor Bipolar de Unión (BJT)
Transistor de Efecto de Campo, de Unión (JFET)
Transistor de Efecto de Campo, de Metal-Óxido-Semiconductor (MOSFET)
Fototransistor
Nota: En un esquema electrónico, los transistores se representan mediante su símbolo, el número de transistor (Q1, Q2, ...) y el tipo de transistor, tal como se muestra aquí:
Aquí podemos ver una selección de los transistores más típicos, mostrando su encapsulado y distribución de patillas. (Para ver la imágen en grande se puede hacer click sobre ella).



Encapsulado de transistores




Ahora vamos a ver los transistores por fuera. Están encapsulados de diferentes formas y tamaños, dependiendo de la función que vayan a desempeñar. Hay varios encapsulados estándar y cada encapsulado tiene una asignación de terminales que puede consultarse en un catálogo general de transistores.
Independientemente de la cápsula que tengan, todos los transistores tienen impreso sobre su cuerpo sus datos, es decir, la referencia que indica el modelo de transistor. Por ejemplo, en los transistores mostrados a la derecha se observa la referencia "MC 140".



Cápsula TO-3.




Se utiliza para transistores de gran potencia, que siempre suelen llevar un radiador de aluminio que ayuda a disipar la potencia que se genera en él.Arriba a la izquierda vemos su distribución de terminales, observando que el colector es el chasis del transistor. Nótese que los otros terminales no están a la misma distancia de los dos agujeros.A la derecha vemos la forma de colocarlo sobre un radiador, con sus tornillos y la mica aislante. La función de la mica es la de aislante eléctrico y a la vez conductor térmico. De esta forma, el colector del transistor no está en contacto eléctrico con el radiador.


Cápsula TO-220.


















Se utiliza para transistores de menos potencia, para reguladores de tensión en fuentes de alimentación y para tiristores y triacs de baja potencia.Generalmente necesitan un radiador de aluminio, aunque a veces no es necesario, si la potencia que van a disipar es reducida.Abajo vemos la forma de colocarle el radiador y el tornillo de sujección. Se suele colocar una mica aislante entre el transistor y el radiador, así como un separador de plástico para el tornillo, ya que la parte metálica está conectada al terminal central y a veces no interesa que entre en contacto eléctrico con el radiador.





Cápsula TO-126.







Se utiliza en transistores de potencia reducida, a los que no resulta generalmente necesario colocarles radiador.Arriba a la izquierda vemos la asignación de terminales de un transistor BJT y de un Tiristor.Abajo vemos dos transistores que tienen esta cápsula colocados sobre pequeños radiadores de aluminio y fijados con su tornillo correspondiente.




Cápsula TO-92.















Es muy utilizada en transistores de pequeña señal.En el centro vemos la asignación de terminales en algunos modelos de transistores, vistos desde abajo.Abajo vemos dos transistores de este tipo montados sobre una placa de circuito impreso. Nótese la indicación "TR5" de la serigrafía, que indica que en ese lugar va montado el transistor número 5 del circuito, de acuerdo al esquema eléctrónico.



Cápsula TO-18.








Se utiliza en transistores de pequeña señal. Su cuerpo está formado por una carcasa metálica que tiene un saliente que indica el terminal del Emisor.










Cápsula miniatura.








Se utiliza en transistores de pequeña señal. Al igual que el anterior, tienen un tamaño bastante pequeño.

No hay comentarios: